Corrigendum: Controlling Radical Formation in the Photoactive Yellow Protein Chromophore.
نویسندگان
چکیده
To understand how photoactive proteins function, it is necessary to understand the photoresponse of the chromophore. Photoactive yellow protein (PYP) is a prototypical signaling protein. Blue light triggers trans-cis isomerization of the chromophore covalently bound within PYP as the first step in a photocycle that results in the host bacterium moving away from potentially harmful light. At higher energies, photoabsorption has the potential to create radicals and free electrons; however, this process is largely unexplored. Here, we use photoelectron spectroscopy and quantum chemistry calculations to show that the molecular structure and conformation of the isolated PYP chromophore can be exploited to control the competition between trans-cis isomerization and radical formation. We also find evidence to suggest that one of the roles of the protein is to impede radical formation in PYP by preventing torsional motion in the electronic ground state of the chromophore.
منابع مشابه
Primary steps of the photoactive yellow protein: isolated chromophore dynamics and protein directed function.
The cycle of the photoactive yellow protein (PYP) has been extensively studied, but the dynamics of the isolated chromophore responsible for transduction is unknown. Here, we present real-time observation of the dynamics of the negatively charged chromophore and detection of intermediates along the path of trans-to-cis isomerization using femtosecond mass selection/electron detachment technique...
متن کاملStructure of the photoactive yellow protein reconstituted with caffeic acid at 1.16 AÊ resolution
# 2002 International Union of Crystallography Printed in Denmark ± all rights reserved A structural study is described of the photoactive yellow protein (PYP) reconstituted with the chromophore derivative 3,4-dihydroxycinnamic acid. The crystal structure of PYP reconstituted with this chromophore at 1.16 AÊ resolution is reported in space group P65. This is the ®rst high-resolution structure of...
متن کاملControlling the Photoreactivity of the Photoactive Yellow Protein Chromophore by Substituting at the <italic>p</italic>-Coumaric Acid Group
Controlling the Photoreactivity of the Photoactive Yellow Protein Chromophore by Substituting at the p-Coumaric Acid Group Martial Boggio-Pasqua and Gerrit Groenhof* Laboratoire de Chimie et Physique Quantiques, IRSAMC, CNRS et Universit e de Toulouse, 31062 Toulouse, France Computational Biomolecular Chemistry group, Max-Planck-Institut f€ur Biophysikalische Chemie, Am Fassberg 11, D-37077 G€o...
متن کاملPredicting the signaling state of photoactive yellow protein.
As a bacterial blue light sensor the photoactive yellow protein (PYP) undergoes conformational changes upon signal transduction. The absorption of a photon triggers a series of events that are initially localized around the protein chromophore, extends to encompass the whole protein within microseconds, and leads to the formation of the transient pB signaling state. We study the formation of th...
متن کاملEvidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein.
Analysis of the chromophore p-coumaric acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and cis isomers was carried out by high performance capillary zone elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 54 28 شماره
صفحات -
تاریخ انتشار 2015